初二数学知识点总结
初二是学生学习非常重要的一个时期,下面为大家总结了初二数学知识点,希望能帮助到大家。
全等三角形
(一)经过翻转、平移后,能够完全重合的两个三角形叫做全等三角形,而该两个三角形的三条边及三个角都对应相等。
(二)全等三角形的性质
1.全等三角形的对应角相等。
2.全等三角形的对应边相等。
3.能够完全重合的顶点叫对应顶点。
4.全等三角形的对应边上的高对应相等。
5.全等三角形的对应角的角平分线相等。
6.全等三角形的对应边上的中线相等。
7.全等三角形面积和周长相等。
8.全等三角形的对应角的三角函数值相等。
(三)全等三角形的判定
(1)SSS(边边边)
三边对应相等的三角形是全等三角形。
(2)SAS(边角边)
两边及其夹角对应相等的三角形是全等三角形。
(3)ASA(角边角)
两角及其夹边对应相等的三角形全等。
(4)AAS(角角边)
两角及其一角的对边对应相等的三角形全等。
(5)RHS(直角、斜边、边)
在一对直角三角形中,斜边及另一条直角边相等。
分式的运算
乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。
除法:除以一个分式等于乘以这个分式的倒数。
加减法:①同分母分式相加减,分母不变,把分子相加减。②异分母的分式先通分,化为同分母的分式,再加减。
分式方程:①分母中含有未知数的方程叫分式方程。②使方程的分母为0的解称为原方程的增根。
一元一次方程根的情况
利用根的判别式去了解,根的判别式可在书面上可以写为“△”。
图形的平移与旋转
1.平移,是指在同一平面内,将一个图形上的所有点都按照某个直线方向做相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移。
2.平移性质
(1)图形平移前后的形状和大小没有变化,只是位置发生变化。
(2)图形平移后,对应点连成的线段平行(或在同一直线上)且相等。
(3)多次连续平移相当于一次平移。
(4)偶数次对称后的图形等于平移后的图形。
(5)平移是由方向和距离决定的。
(6)经过平移,对应线段平行(或共线)且相等,对应角相等,对应点所连接的线段平行(或共线)且相等。
3.旋转,在平面内,将一个图形绕某一定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角叫做旋转角。
4.旋转的性质:旋转前后两个图形是全等图形,对应点到旋转中心的距离相等,对应点与旋转中心的连线所成的角等于旋转角。
二次根式知识点
1、一般地,形如√a的代数式叫做二次根式,其中,a叫做被开方数。当a≥0时,√a表示a的算术平方根;当a小于0时,√a的值为纯虚数。
2、二次根式的加减法
(1)同类二次根式:一般地,把几个二次根式化为比较简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式。
(2)合并同类二次根式:把几个同类二次根式合并为一个二次根式就叫做合并同类二次根式。
(3)二次根式加减时,可以先将二次根式化为比较简二次根式,再将被开方数相同的进行合并。
3、二次根式的乘除法
轴对称
1.如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。
2.轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
3.角平分线上的点到角两边距离相等。
4.线段垂直平分线上的任意一点到线段两个端点的距离相等。
5.与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
6.轴对称图形上对应线段相等、对应角相等。
7.画一图形关于某条直线的轴对称图形的步骤:找到关键点,画出关键点的对应点,按照原图顺序依次连接各点。
8.点(x,y)关于x轴对称的点的坐标为(x,-y)
点(x,y)关于y轴对称的点的坐标为(-x,y)
点(x,y)关于原点轴对称的点的坐标为(-x,-y)
- ·上一篇:初二数学知识点归纳 知识点总结整理
- ·下一篇:初二勾股定理简洁证明方法