学职网首页

客服:1570390600

       点击发布信息
4006580702

服务时间:7:00-23:00

当前位置:首页 > 题库资料 > 初中资料 > 初三资料 > 初三数学资料 >

椭圆焦点三角形面积公式

文章来源: 学好网 作者: 小兵 发布时间:2021-04-26 11:36 阅读:

椭圆的焦点三角形是指以椭圆的两个焦点F1,F2与椭圆上任意一点P为顶点组成的三角形。焦点三角形面积公式是S=b2·tan(θ/2)(θ为焦点三角形的顶角)。

椭圆焦点三角形面积公式

椭圆的焦点三角形是指以椭圆的两个焦点F1,F2与椭圆上任意一点P(不与焦点共线)为顶点组成的三角形。椭圆的焦点三角形性质为:

(1)|PF1|+|PF2|=2a

(2)4c2=|PF1|2+|PF2|2-2|PF1|·|PF2|·cosθ

(3)周长=2a+2c

(4)面积=S=b2·tan(θ/2)(∠F1PF2=θ)

证明:

设P为椭圆上的任意一点P(不与焦点共线),

∠F2F1P=α ,∠F1F2P=β, ∠F1PF2=θ,

则有离心率e=sin(α+β) / (sinα+sinβ),

焦点三角形面积S=b2·tan(θ/2)。

点击查看更多初三数学资料资讯
免费预约试听

免费预约成功后,将获得免费试听课程

联系电话
短信验证码