学职网首页

客服:1570390600

       点击发布信息
4006580702

服务时间:7:00-23:00

当前位置:首页 > 题库资料 > 初中资料 > 初三资料 > 初三数学资料 >

三角形外角平分线定理证明方法

文章来源: 学好网 作者: 雅雅 发布时间:2020-12-18 18:25 阅读:

三角形外角平分线定理是三角形外角的平分线如果和对边的延长线相交,它按照夹相应角的两边的比外分对边。接下来分享证明方法,供参考。

三角形外角平分线定理证明方法

外角平分线定理证明方法

如图,AD是△ABC中∠BAC的外角∠CAF的平分线。求证:BA/AC=BD/DC

证明:过C作CE∥DA与BA交于E。则:BA/AE=BD/DC

∵∠DAF=∠CEA;∠DAC=∠ECA;∠DAF=∠DAC。

∴∠CEA=∠ECA;∴AE=AC;∴BA/AC=BD/DC。

外角平分线定理证明方法

内角平分线定理证明方法

角平分线线上的点到角两边的距离相等。

若射线AD是∠CAB的角平分线,求证:CD=BD

∵∠DCA=∠DBA

∠CAD=∠BAD

AD=AD

∴△ACD≌△ABD

∴CD=BD

内角平分线定理证明方法

角平分线的性质定理

1.角平分线可以得到两个相等的角。

2.角平分线上的点到角两边的距离相等。

3.三角形的三条角平分线交于一点,称作三角形内心。三角形的内心到三角形三边的距离相等。

4.三角形一个角的平分线,这个角平分线其对边所成的两条线段与这个角的两邻边对应成比例。

点击查看更多初三数学资料资讯
免费预约试听

免费预约成功后,将获得免费试听课程

联系电话
短信验证码