圆的标准方程:(x-a)2+(y-b)2=R2。圆的一般方程:x2+y2+Dx+Ey+F=0(D2+E2-4F>0)。
标准方程
圆半径的长度定出圆周的大小,圆心的位置确定圆在平面上的位置。如果已知:(1)圆半径长R;(2)中心A的坐标(a,b),则圆的大小及其在平面上关于坐标轴的位置就已确定(如下图)。根据图形的几何尺寸与坐标的联系可以得出圆的标准方程。结论如下:(x-a)2+(y-b)2=R2
当圆的中心A与原点重合时,即原点为中心时,即a=b=0,圆的方程为:x2+y2=R2
圆的一般方程
圆的标准方程是一个关于x和y的二次方程,将它展开并按x、y的降幂排列,得:
x2+y2-2ax-2by+a2+b2-R2=0
设D=-2a,E=-2b,F=a2+b2-R2;则方程变成:
x2+y2+Dx+Ey+F=0
任意一个圆的方程都可写成上述形式。把它和下述的一般形式的二元二次方程比较,可以看出它有这样的特点:(1)x2项和y2项的系数相等且不为0(在这里为1);(2)没有xy的乘积项。
Ax2+Bxy+Cy2+Dx+Ey+F=0
圆的端点式:
若已知两点A(a1,b1),B(a2,b2),则以线段AB为直径的圆的方程为(x-a1)(x-a2)+(y-b1)(y-b2)=0
圆的离心率e=0,在圆上任意一点的曲率半径都是r。
经过圆 x2+y2=r2上一点M(a0,b0)的切线方程为 a0·x+b0·y=r2
在圆(x2+y2=r2)外一点M(a0,b0)引该圆的两条切线,且两切点为A,B,则A,B两点所在直线的方程也为 a0·x+b0·y=r2。
好了,关于圆的标准方程和一般方程这个问题学好网永彬就为大家介绍到这里了,希望对你有所帮助,若还有更多疑问,可以点击右下角咨询哦!本文是学好网整理汇编,请勿转载,以尊重我站编辑人员劳动成果及版权。如有转载,我方将追究法律责任。若有侵权,请联系网站负责人删除。