高一数学函数知识点归纳整理
高中数学比较难的便是函数部分,各种各样函数图像和解析式很容易记错。为了方便大伙学习,学好网小辫子整理了以下高一数学函数知识要点总结,欢迎参阅。
高中数学必修一知识结构图怎么从数学学渣成数学学霸?学霸支招:怎么高三数学成绩高中文科数学公式大全
高一数学函数知识要点总结
1、函数:设A、B为非空集合,假如按照某个特定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,写作y=f(x),x∈A,其中,x叫做自变量,x的取值范围A叫做函数的概念域,与x相对应的y的值叫做函数值,函数值的集合B={f(x)∣x∈A }叫做函数的值域。
2、函数概念域的解题思路:
⑴ 若x处于分母位置,则分母x不能为0。
⑵ 偶次方根的被开方数不小于0。
⑶ 对数式的真数必须大于0。
⑷ 指数对数式的底,不得为1,且必须大于0。
⑸ 指数为0时,底数不得为0。
⑹ 假如函数是由一些基本函数根据四则运算结合而成的,那么,它的概念域是各个部分都有意义的x值组成的集合。
⑺ 实际问题中的函数的概念域还要实际问题有意义。
3、相同函数
⑴ 表达式相同:与表示自变量和函数值的字母无关。
⑵ 概念域一致,对应法则一致。
4、函数值域的求法
⑴ 观察法:适用于初等函数及一些简单的由初等函数根据四则运算获得的函数。
⑵ 图像法:适用于易于画出函数图像的函数已经分段函数。
⑶ 配办法:主要用于二次函数,配方成 y=(x-a)2+b 的形式。
⑷ 代换法:主要用于由已知值域的函数推测未知函数的值域。
5、函数图像的变换
⑴ 平移变换:在x轴上的变换在x上就行加减,在y轴上的变换在y上开展加减。
⑵ 伸缩变换:在x前加上系数。
⑶ 对称变换:高中时期不作要求。
6、映射:设A、B是两个非空集合,假如按某一个确定的对应法则f,使对于A中的任意仪的元素x,在集合B中都有的确定的y与之对应,那么就称对应f:A→B为从集合A到集合B的映射。
⑴ 集合A中的每一个元素,在集合B中都有象,并且象是的。
⑵ 集合A中的不同元素,在集合B中对应的象能够是同一个。
⑶ 不要求集合B中的每一个元素在集合A中都有原象。
7、分段函数
⑴ 在概念域的不同部分上有不同的解析式表达式。
⑵ 各部分自变量和函数值的取值范围不同。
⑶ 分段函数的概念域是各段概念域的交集,值域是各段值域的并集。
8、复合函数:假如(u∈M),u=g(x) (x∈A),则,y=f[g(x)]=F(x) (x∈A),称为f、g的复合函数。
高一数学函数的性质
1、函数的局部性质——单调性
设函数y=f(x)的概念域为I,假如对应概念域I内的某个区间D内的任意两个变量x1、x2,当x1< x2时,都有f(x1)<f(x2),那么y=f(x)在区间D上是增函数,D是函数y=f(x)的单调递增区间;当x1< x2时,都有f(x1)>f(x2),那么那么y=f(x)在区间D上是减函数,D是函数y=f(x)的单调递减区间。
⑴函数区间单调性的判断思路
ⅰ在给出区间内任取x1、x2,则x1、x2∈D,且x1< x2。
ⅱ 做差值f(x1)-f(x2),并开展变形和配方,变为易于判断正负的形式。
ⅲ判断变形后的表达式f(x1)-f(x2)的符号,指出单调性。
⑵复合函数的单调性
复合函数y=f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律为“同增异减”;多个函数的复合函数,通过原则“减偶则增,减奇则减”。
⑶注意事项
函数的单调区间只能是其概念域的子区间,不能把单调性相同的区间和在一起写成并集,假如函数在区间A和B上都递增,则表示为f(x)的单调递增区间为A和B,不能表示为A∪B。
2、函数的整体性质——奇偶性
对于函数f(x)概念域内的任意一个x,都有f(x) =f(-x),则f(x)就为偶函数;
对于函数f(x)概念域内的任意一个x,都有f(x) =-f(x),则f(x)就为奇函数。
小编介绍:高中数学知识要点总结归纳
⑴奇函数和偶函数的性质
ⅰ无论函数是奇函数还是偶函数,只要函数具有奇偶性,该函数的概念域一定关于原点对称。
ⅱ奇函数的图像关于原点对称,偶函数的图像关于y轴对称。
⑵函数奇偶性判断思路
ⅰ先确定函数的概念域是否关于原点对称,若不关于原点对称,则为非奇非偶函数。
ⅱ确定f(x) 和f(-x)的关系:
若f(x) -f(-x)=0,或f(x) /f(-x)=1,则函数为偶函数;
若f(x)+f(-x)=0,或f(x)/ f(-x)=-1,则函数为奇函数。
3、函数的比较值问题
⑴对于二次函数,采用配办法,将函数化为y=(x-a)2+b的形式,得出函数的比较大值或比较小值。
⑵对于易于画出函数图像的函数,画出图像,从图像中观察比较值。
⑶关于二次函数在闭区间的比较值问题
ⅰ判断二次函数的顶点是否在所求区间内,若在区间内,则接ⅱ,若不在区间内,则接ⅲ。
ⅱ 若二次函数的顶点在所求区间内,则在二次函数y=ax2+bx+c中,a>0时,顶点为比较小值,a<0时顶点为比较大值;后判断区间的两端点距离顶点的远近,离顶点远的端点的函数值,即为a>0时的比较大值或a<0时的比较小值。
ⅲ 若二次函数的顶点不在所求区间内,则判断函数在该区间的单调性
若函数在[a,b]上递增,则比较小值为f(a),比较大值为f(b);
若函数在[a,b]上递减,则比较小值为f(b),比较大值为f(a)。
高一数学基本初等函数
1、指数函数:函数y=ax (a>0且a≠1)叫做指数函数
a 的取值 | a>1 | 0<a<1 |
概念域 | x∈R | x∈R |
值域 | y∈(0,+∞) | y∈(0,+∞) |
单调性 | 全概念域单调递增 | 全概念域单调递减 |
奇偶性 | 非奇非偶函数 | 非奇非偶函数 |
过定点 | (0,1) | (0,1) |
注意:⑴由函数的单调性能够看出,在闭区间[a,b]上,指数函数的比较值为:
a>1时,比较小值f(a),比较大值f(b);0<a<1时,比较小值f(b),比较大值f(a)。
⑵ 对于任意指数函数y=ax (a>0且a≠1),都有f(1)=a。
2、对数函数:函数y=logax(a>0且a≠1)),叫做对数函数
a 的取值 | a>1 | 0<a<1 |
概念域 | x∈(0,+∞) | x∈(0,+∞) |
值域 | y∈R | y∈R |
单调性 | 全概念域单调递 | 全概念域单调递减 |
奇偶性 | 非奇非偶函数 | 非奇非偶函数 |
过定点 | (1,0) | (1,0) |
3、幂函数:函数y=xa(a∈R),高中时期,幂函数只研究第I象限的状况。
⑴全部幂函数都在(0,+∞)区间内有概念,而且过定点(1,1)。
⑵a>0时,幂函数图像过原点,且在(0,+∞)区间为增函数,a越大,图像坡度越大。
⑶a<0时,幂函数在(0,+∞)区间为减函数。
当x从右侧无限接近原点时,图像无限接近y轴正半轴;
当y无限接近正无穷时,图像无限接近x轴正半轴。
幂函数总图见下页。
4、反函数:将原函数y=f(x)的x和y互换即得其反函数x=f-1(y)。
反函数图像与原函数图像关于直线y=x对称。
上述《高一数学函数知识要点总结整理》由学好网小编整理发布,更多内容请关注学好网。
高一数学函数知识点归纳整理老田就先为大家讲解到这里了,希望可以帮到你些,若还有更多疑问,可以点击右下角咨询哦!“为中华崛起而读书”这句话饱含着周恩来对祖国的热爱。我们祖国当时因为反动政府腐败无能,而且闭关锁国,没有先进的科学设备,致使洋人瞧不起中国人,以为中国人好欺负,所以无所顾忌地剥削和欺侮中国人民。因此,中国要强大起来,我们每一个人都必须多读书,增加知识,扩展自己的视野,促使祖国的科技发达。我们要让洋人们知道中国人不是好欺负的。
- ·上一篇:上比较难的数学题
- ·下一篇:2019高考数学知识点有哪些