初中函数入门的基础知识
函数是初中数学的重要知识点,初中常见的函数有一次函数、二次函数等,接下来分享与函数有关的知识点。
函数的定义
给定一个数集A,假设其中的元素为x,对A中的元素x施加对应法则f,记作f(x),得到另一数集B,假设B中的元素为y,则y与x之间的等量关系可以用y=f(x)表示,函数概念含有三个要素:定义域A、值域C和对应法则f。
函数的分类
(一)常函数
x取定义域内任意数时,都有y=C(C是常数),则函数y=C称为常函数,其图象是平行于x轴的直线或直线的一部分。
(二)一次函数
1.一般形如y=kx+b(k,b是常数,k≠0),其中x是自变量,y是因变量。特别地,当b=0时,y=kx+b(k为常数,k≠0),y叫做x的正比例函数。
2.一次函数有三种表示方法:
(1)解析式法:用含自变量x的式子表示函数的方法叫做解析式法。
(2)列表法:把一系列x的值对应的函数值y列成一个表来表示的函数关系的方法叫做列表法。
(3)图像法:用图象来表示函数关系的方法叫做图象法。
(三)二次函数
1.二次函数的基本表示形式为y=ax2+bx+c(a≠0)。二次函数比较高次必须为二次,二次函数的图像是一条对称轴与y轴平行或重合于y轴的抛物线。
2.顶点式:y=a(x-h)2+k 顶点坐标为(h,k)。
3.交点式:y=a(x-x?)(x-x?) 函数与图像交于(x?,0)和(x?,0)。
二次函数与图像的关系
(一)a与图像的关系
1.开口方向
当a>0时,开口向上。
当a<0时,开口向下。
2.开口大小
|a|越大,图像开口越小。
|a|越小,图像开口越大。
(二)b与图像的关系
当b=0时,对称轴为y轴。
当ab>0时,对称轴在y轴左侧。
当ab<0时,对称轴在y轴右侧。
(三)c与图像的关系
当c=0时,图像过原点。
当c>0时,图像与y轴正半轴相交。
当c<0时,图像与y轴负半轴相交。
- ·上一篇:初中3分钟的家长会发言稿
- ·下一篇:初中生营养三餐简单食谱介绍