正多边形内角和公式及定义(老邓说)
正多边形内角和公式:n边形的内角的和等于:(n-2)×180°。正多边形是指二维平面内各边相等,各角也相等的多边形,也叫正多角形。
正多边形内角和公式
多边形边数公式:n边形的边=(内角和÷180°)+2。
此定理适用全部的平面多边形,包括凸多边形和平面凹多边形。
多边形角度公式:
1、n边形外角和等于n·180°-(n-2)·180°=360°
2、多边形的每个内角与它相邻的外角是邻补角,因此n边形内角和加外角和等于n·180°
3、内角:正n边形的内角和度数为:(n-2)×180°;正n边形的一个内角是(n-2)×180°÷n.
正多边形的概念
各边相等,各角也相等的多边形叫做正多边形。
正多边形的外接圆的圆心叫做正多边形的中心。
正多边形的外接圆的半径叫做半径。
中心到圆内接正多边形各边的距离叫做边心距。
正多边形各边所对的外接圆的圆心角都相等,这个圆心角叫做正多边形的中心角。
好了,关于正多边形内角和公式及定义(老邓说)这个问题学好网老邓就为大伙介绍到这里了,期待对你有所帮助,若还有更多疑问,能够点击右下角咨询哦!本文是学好网整理汇编,请勿转载,以尊重我站编辑人员劳动成果及版权。如有转载,我方将追究法律法规责任。若有侵权,请联系网站负责人删除。
- ·上一篇:二次函数顶点坐标公式以及抛物线顶点坐标公式
- ·下一篇:体积的计算公式(小编解答)