学职网首页

客服:1570390600

       点击发布信息
4006580702

服务时间:7:00-23:00

当前位置:首页 > 题库资料 > 初中资料 > 初三资料 > 初三数学资料 >

证明三角形全等的五种方法

文章来源: 学好网 作者: 浩瀚 发布时间:2020-12-18 18:20 阅读:

边边边:三边对应相等的两个三角形全等;边角边:两边和它们夹角对应相等的两个三角形全等;角边角公理(ASA):两角和它们的夹角对应相等的两个三角形全等;角角边:两个角和其中一角的对边对应相等的两个三角形全等;斜边直角边定理:斜边和一条直角边对应相等的两个直角三角形全等。

证明三角形全等的五种方法

三角形基本简介

在同一平面内,由不在同一条直线的三条线段首尾相接所得的封闭图形。

三角形三个内角的和等于180度。

三角形任何两边的和大于第三边。

三角形任意两边之差小于第三边。

三角形的外角等于与它不相邻的两个内角的和。

三角形按角度分类

a.锐角三角形:三个角都小于90度。

b.直角三角形:简称Rt△,其中一个角等于90度。

c.钝角三角形:其中一个角一定大于90度,钝角大于九十度且小于一百八十度。

其中锐角三角形和钝角三角形统称为斜三角形。

三角形按边分类

不等边三角形:3条边都不相等。

等腰三角形:有2条边相等。

等边三角形:3条边都相等。

三角形判定方法

若一个三角形的三边a,b,c(a<b<c)满足

a^2+b^2>c^2,则这个三角形是锐角三角形;

a^2+b^2=c^2,则这个三角形是直角三角形;

a^2+b^2<c^2,则这个三角形是钝角三角形。

点击查看更多初三数学资料资讯
免费预约试听

免费预约成功后,将获得免费试听课程

联系电话
短信验证码